BARRERAS DE SEGURIDAD INTRÍNSECA APTAS PARA ZONAS EXPLOSIVAS.

Safety Barriers

Series 9001, 9002, 9004

- Complete product range for all standard applications
- Flexible and space saving single and dual channel versions on 12 mm only
- Reduced inventory due to uniform exchangeable fuse
- Installation in Zone 2 and Division 2 possible

Safety barriers are used to connect intrinsically safe (Ex i) circuits with non-intrinsically safe circuits. The barriers limit the electrical energy towards the hazardous area by means of a combination of Zener diodes, resistors and fuses.
Safety barriers featuring an extremely broad application area.

Advantages at a Glance:

Safety Barriers

Series 9001, 9002, 9004

Introduction

Application

Safety barriers are used as economical interfaces without galvanic isolation between intrinsically safe and non-intrinsically safe circuits. They protect circuits (i. e. cable and apparatus) in hazardous locations.

Safety barriers are so-called associated apparatus:
Since they also contain non-intrinsically circuits they must either be installed in the safe area or if certified in Zone 2 / Division 2. The combination with an further type of explosion protection (e.g. flame proof enclosure) enables the installation in Zone 1.

Function

Safety barriers are used to limit the power supply into an intrinsically circuit in such a way that neither sparks nor thermic effects (hot surfaces) can cause an ignition.
A safety barrier thus contains three essential elements:

- Zener diodes for limiting the voltage
- Resistor or components for limiting the current
- Fuse for the protection of zener diodes

R. STAHL safety barriers Series 9001, 9002 and 9004 also contain a protective circuit with an exchangeable fuse externally accessible, protecting the internally encapsulated non-accessible fues of the safety barrier. The protective circuit prevents both fuses tripping at the same time.
In order to cover the complete spectrum of instrumentation applications a few types of safety barriers include function blocks like e.g. electronic current limitations, amplifier, etc.

Potential Equalisation / Grounding

Differences in potential can delete the intrinsically safety and thus make explosion protection ineffective, since safety barriers have no galvanic isolation between input and output.
All (national) standards for the installation of intrinsically safe circuits thus require:

- the existance of a potential equalisation or grounding system as well as
- the connection of safety barriers to this potential equalisation
R. STAHL safety barriers can alternatively be connected directly via the electrically conducting snap-on mechanism or by means of the $\doteq / P A$-terminal to the potential equalisation.

Safety Barriers
 Series 9001, 9002, 9004

Selection Criteria - Function and Safety

Selection of safety barriers is generally carried out in two steps:

- Functional consideration
- Safety consideration

1. Functional consideration

Safety barriers are first selected according to their electrical requirements. It is therefore necessary to know the electrical data of the connected apparatus.

Further selection criteria:

- Polarity of the voltage at the safety barrier $\mathrm{U}_{\mathrm{N}}(+,-, \sim)$ in reference to $\stackrel{ \pm}{\bar{\prime}} / \mathrm{PA}$
- Voltage UN
- Max. permissible voltage drop across the barrier, caused by the line resistance R_{L} and / or a constant voltage drop ΔU
- Type of signal to be transmitted;
voltage signals can only be transmitted via barriers with purely resistive line resistance; this limitation does not apply to current signals.

It is furthermore to be examined, if the circuit may be grounded or if an earth-free („floating") circuit is required due to electrical or measurement reasons.
An earth-free („floating") circuit can usually be established by using a dual-channel safety barrier or interconnecting two single-channel safety barriers.

For many standard application in instrumentation special safety barriers are available,
which are designed optimally for the respective application according to the criteria mentioned above.

Safety Barriers

Series 9001, 9002, 9004

Selection Criteria - Function and Safety

2. Safety consideration

The safe maximum values of an individual safety barrier (single- or dual-channel) are determined by the certification:

- Maximum voltage Uo
- Maximum current l_{0}
- Maximum power P_{o}
- Maximum permissible capacity C_{0}
- Maximum permissible inductance $L_{\text {o }}$

It is to be tested however, if the permissible safe maximum values of the intrinsically safe apparatus (field apparatus in the hazardous area) are maintained by the selected safety barrier.

Interconnection of Safety Barriers

If several safety barriers are interconnected, possible current and / or voltage addition is to be taken into consideration from the safety point of view (example 1 and 2).
The maximum values for U_{0} and I_{0} permissible for an interconnection as well as the resulting permissible maximum values for C_{0} and L_{o} for the various explosion groups can be referred to in the ignition curves (see EN 60079-11).

Example 1 Interconnection of two safety barriers for positive potential.
From a safety point of view a current addition results, i.e. $\mathrm{I}_{0}=\mathrm{I}_{01}+\mathrm{I}_{02}$
The new voltage U_{0} is assumed to be the higher of the two values U_{01} and U_{02}, thus $U_{0}=\max .\left(U_{01}, U_{02}\right)$

Example 2 Interconnection of two safety barriers for positive and negative potential. From a safety point of view a voltage addition results, i.e. $U_{0}=U_{01}+U_{02}$
The new current I_{0} is assumed to be the higher of the two values I_{01} and I_{02}, thus $\mathrm{I}_{\mathrm{o}}=\max .\left(\mathrm{I}_{01}, \mathrm{I}_{\mathrm{o} 2}\right)$

Interconnection of Safety Barriers

Addition possibilities

Example:	I = current addition	Polarity	-	+	\sim
	When interconnecting two safety barriers for alternating potential $I+U$ results, thus a current addition as well as a voltage addition is to be taken into consideration.	-	I	U	I and U
		+	U	1	I and U
		\sim	I and U	I and U	I and U

The EN 60079-11, table A. 1 contains the permissible value pairs / combinations of permissible maximum safe values for:

- Voltage U。
- Current Io
- External capacitance Co

The following procedure is to be applied:

1. Test, if the value combination U_{0} and I_{0} determined is permitted
2. Determination of capacitance C_{0} from voltage Uo

Example 1:
Values $28 \mathrm{~V} / 100 \mathrm{~mA}$ are permitted, since the current I_{0} can be up to 120 mA at 28 V for explosion group IIC
Example 2:
Values $24 \mathrm{~V} / 210 \mathrm{~mA}$ are permitted only for IIB
Example:
$\mathrm{U}_{0}=27 \mathrm{~V}$. For IIB the result is $\mathrm{C}_{0}=705 \mathrm{nF}$

It is not allowed to apply the ignition diagrams acc. to EN 60079-11 for the assersment of the intrinsic safety in case that safety barriers with electronic current limitations need to be interconnected. A suitable procedure is described in the EN 60079-25.

Further Mounting Possibilities

Further mounting possibilities result, when using the attachments supplied as accessories. The mounting attachments can be mounted to the barriers by means of an adaptor. (Mounting accessories please find in table Accessories and Spare parts)

	DIN-rail NS35/15 acc. to EN 50022	DIN-rail NS32 acc. to EN 50035	Mounting plate or flat bar
non isolated	09914 E 02		
isolating		Mounting attachment in moulded plastic 9000003980 $09917 E 02$	

Exchangeable Back-up Fuse

All safety barriers Series 9001, 9002 and 9004 have an exchangeable back-up fuse. Dual-channel safety barriers have a back-up fuse per channel. This fuse backs up the internal, non-accessible fuse. A protective circuit prevents tripping of both fuses at the same time. It is thus ensured that the safety barrier is protected against destruction resulting from reverse polarity of the operating voltage or excessively high operation voltages.

Two advantages are essential for maintenance and repair:

- in case of overload the safety barrier does not have to be exchanged, the exchangeable back-up fuse can be replaced without removing the barrier;

The safety barriers and their back-up fuses are designed in such a way that only one back-up fuse ($\mathrm{I}=160 \mathrm{~mA}$) can be used for all barriers Series 9001, 9002 and 9004.
Stocking spare parts is thus reduced to an absolute minimum.

Dimensional Drawings (All Dimensions in mm) - Subject to Alterations

Safety barriers 9001, 9002, 9004

09930E00
Safety barriers 9001, 9002, 9004 mounting on
DIN rail NS 35/15 (acc. to EN 50 022)

Safety barriers 9001, 9002, 9004 mounting on
DIN rail NS 32 (acc. to EN 50 035) by means of adaptor and mounting attachment, moulded plastic

09933E00

Safety barriers 9001, 9002, 9004 mounting on mounting plate by means of adaptor

Safety Barriers

Series 9001, 9002, 9004

Safety Barriers
 Series 9001, 9002, 9004

Overview application Safety Barrieres

	06332E00	Thermocouple, mV signals Field circuit floating	9002/77-093-300-001
	06331E00	Resistance thermometer (RTD), Potentiometer Pt100, 2-wire connection Field circuit floating Pt100, 3-wire connection Field circuit floating Pt100, 4-wire connection Field circuit floating	$\begin{aligned} & 9002 / 22-032-300-111 \\ & 9002 / 22-032-300-111 \\ & 9002 / 22-032-300-111 \\ & 9002 / 77-093-040-001 \end{aligned}$
	07428E00	Strain gauge load cells 350Ω or $700 \Omega 6$-wire $\pm 7.5 \mathrm{~V}(15 \mathrm{~V})$ Field circuit floating $350 \Omega 6$-wire +10 V Field circuit floating 350Ω or $700 \Omega 6$-wire +16 V Field circuit floating	$\begin{aligned} & 9002 / 10-187-270-001 \\ & 9002 / 10-187-020-001 \\ & 9002 / 77-093-040-001 \\ & 9002 / 11-130-360-001 \\ & 9002 / 11-120-024-001 \\ & 9002 / 13-199-225-001 \\ & 9002 / 11-199-030-001 \end{aligned}$
	06327E00	Fire \& gas detection	9001/01-280-165-101
	06892 E 00	Vibration sensor	9002/00-260-138-001
	06318E00	Intrinsically safe power feed of a load	9004

Safety Barriers
Series 9001, 9002, 9004

Selection Table				
Description				Order number
Application	Analog input with standard transmitter Field circuit grounded			9001/51-280-110-141
Diagram	Hazardous area	Safe area	\square	
Nominal values				
Operating voltage	$\mathrm{U}_{\mathrm{N}}=+20 \mathrm{~V} \ldots 35 \mathrm{~V}$			
Operating current	$\mathrm{I}_{\mathrm{N}}=3.6 \mathrm{~mA} \ldots 22 \mathrm{~mA}$			
Load	$\begin{aligned} & R_{L} \leq 500 \Omega\left(U_{N} \leq 23.5 \mathrm{~V}\right) \\ & R_{L} \leq 750 \Omega\left(U_{N}>23.5 \mathrm{~V}\right) \end{aligned}$			
Operating voltage of transmitter	$\begin{aligned} & U_{\text {min }}\left(I_{N}=20 \mathrm{~mA}\right) \\ & U_{N}-8.5 \mathrm{~V} \\ & 15 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & U_{N} \\ & \leq 23.5 \mathrm{~V} \\ & >23.5 \mathrm{~V} \end{aligned}$		
Safety values				
Maximum voltage	$\mathrm{U}_{0}=28 \mathrm{~V}$			
Maximum current	$\mathrm{I}_{0}=110 \mathrm{~mA}$			
Maximumpermissible external inductance	$\begin{array}{ll} & \quad \text { IIC } \\ \text { Lo } \quad 1.2 \mathrm{mH} \end{array}$	$\begin{aligned} & \mathrm{IIB} \\ & 9 \mathrm{mH} \end{aligned}$		
Maximum permissible external capacitance	$\begin{array}{ll} & \text { IIC } \\ \text { Co } & 0.083 \mu \mathrm{~F} \end{array}$	${ }_{0.65 \mu \mathrm{~F}}^{\mathrm{IIB}}$		
Maximum power	$\mathrm{P}_{\mathrm{o}}=770 \mathrm{~mW}$			
Application note	With regulated power supply $\mathrm{U}_{\mathrm{N}} \leq 26 \mathrm{~V}$ safety barrier 9002/13-280-110-001 can be used. Operating voltage of transmitter is $U_{\text {min }} \geq 12.1 \mathrm{~V}$ (at $U_{N}=24 \mathrm{~V}$; $I_{N}=20 \mathrm{~mA} ; R_{L}=250 \Omega$). The safety barriers enables 2-way communication from / to a HART transmitter to / from a hand held communicator or DCS. Compatible to all HART transmitters.			
Note	Further technical data see page			

Operating voltage of transmitter is $U_{\min } \geq 12.1 \mathrm{~V}$
(at $U_{N}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}=20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=250 \Omega$).
a HART transmitter to / from a hand held communicator or DCS.

Further technical data see page

Safety Barriers

Series 9001, 9002, 9004

Safety Barriers

Series 9001, 9002, 9004

Selection Table				
Description				Order number
Application	Analog output (sourcing) for i/p converter etc. Field circuit floating			9002/13-252-121-041
Diagram				
Nominal values				
Operating voltage	$\mathrm{U}_{\mathrm{N}}=+20 \mathrm{~V} \ldots 35 \mathrm{~V}$			
Operating current	$\mathrm{I}_{\mathrm{N}}=0 \ldots 22 \mathrm{~mA}$			
Maximum voltage drop of the safety barrier	$\Delta U_{\text {max }} \leq 8.9 \mathrm{~V}$			
Safety values				
Maximum voltage	$\mathrm{U}_{\mathrm{o}}=25.2 \mathrm{~V}$			
Maximum current	$\mathrm{I}_{0}=121 \mathrm{~mA}$			
Maximumpermissible external inductance	$\begin{array}{ll} & \text { IIC } \\ \text { Lo } & 1.25 \mathrm{mH} \end{array}$	${ }_{7.35 \mathrm{mH}}$		
Maximum permissible external capacitance	$\begin{array}{ll} & \text { IIC } \\ C_{0} & 0.104 \mu \mathrm{~F} \end{array}$	$\stackrel{\mathrm{IIB}}{0.8 \mu \mathrm{~F}}$		
Maximum power	$\mathrm{P}_{\mathrm{o}}=763 \mathrm{~mW}$			
Note	Further technical data se			

Selection Table				
Description				Order number
Application	Digital input with switch (load at +) Field circuit grounded			9001/01-252-057-141
Diagram	Hazardous area			
Nominal values				
Operating voltage	$\mathrm{U}_{\mathrm{N}}=+20 \mathrm{~V} \ldots 35 \mathrm{~V}$			
Operating current	$\mathrm{I}_{\mathrm{N}}=40 \mathrm{~mA}$			
Voltage at load	$\mathrm{U}_{\mathrm{L}} \geq \mathrm{U}_{\mathrm{N}}-3 \mathrm{~V}$			
Safety values				
Maximum voltage	$\mathrm{U}_{0}=25.2 \mathrm{~V}$			
Maximum current	$\mathrm{I}_{0}=57 \mathrm{~mA}$			
Maximum permissible external inductance	Lo	$\begin{aligned} & \text { IIC } \\ & 6.3 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \text { IIB } \\ & 25 \mathrm{mH} \end{aligned}$	
Maximum permissible external capacitance	C_{0}	$\begin{aligned} & \text { IIC } \\ & 0.107 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { IIB } \\ & 0.82 \mu \mathrm{~F} \end{aligned}$	
Maximum power	$\mathrm{P}_{\mathrm{o}}=359 \mathrm{~mW}$			
Application note	This safety barrier is particularly suited to drive a relay. Also it is possible to drive a digital input (optocoupler) of an automation system as load.			
Note	Further technical data see page			

Safety Barriers

Series 9001, 9002, 9004

Safety Barriers

Series 9001, 9002, 9004

Safety Barriers

Series 9001, 9002, 9004

Safety Barriers

Series 9001, 9002, 9004

Safety values			
Maximum voltage	$\mathrm{U}_{0}=18.7 \mathrm{~V}$		
Maximum current	$\mathrm{I}_{0}=330 \mathrm{~mA}$		
Maximumpermissible external inductance	Lo	$\begin{aligned} & \text { IIC } \\ & 0.18 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \text { IIB } \\ & 1.45 \mathrm{mH} \end{aligned}$
Maximum permissible external capacitance	C	$\begin{aligned} & \text { IIC } \\ & 0.270 \mu \mathrm{~F} \end{aligned}$	${ }_{1.64 \mu \mathrm{~F}}^{\mathrm{IIB}}$
Maximum power	$\mathrm{P}_{0}=1.45 \mathrm{~W}$		
Application note	With 4-wire connection (without sense) the respective safety barrier is not needed. Nominal values remain unchanged; safety maximum current is reduced to $\mathrm{I}_{0}=310 \mathrm{~mA}$ and maximum power to $\mathrm{P}_{0}=1.36 \mathrm{~W}$.		
Note	Further technical data see page		

Safety Barriers
Series 9001, 9002, 9004

Safety Barriers
 Series 9001, 9002, 9004

Safety values

Maximum voltage	$\mathrm{U}_{0}=19.9 \mathrm{~V}$		
Maximum current	$\mathrm{I}_{0}=285 \mathrm{~mA}$		
Maximum permissible external inductance	Lo	$\begin{aligned} & \text { IIC } \\ & 0.2 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \text { IIB } \\ & 1.8 \mathrm{mH} \end{aligned}$
Maximumpermissible external capacitance	Co	$\begin{aligned} & \text { IIC } \\ & 0.223 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { IIB } \\ & 1.42 \mu \mathrm{~F} \end{aligned}$
Maximum power	$\mathrm{P}_{\mathrm{o}}=1.42 \mathrm{~W}$		
Application note	With 4-wire connection (without sense) the respective safety barrier is not needed. Nominal values remain unchanged; safety maximum current is reduced to $\mathrm{I}_{0}=255 \mathrm{~mA}$ and maximum power to $\mathrm{P}_{\mathrm{o}}=1.3 \mathrm{~W}$.		
Note	Further technical data see page		

Safety Barriers

Series 9001, 9002, 9004

Selection Table				
Description				Order number
Application	Vibration sensor			9002/00-260-138-001
Diagram	Hazardous area		$-24 \mathrm{~V} \mathrm{DC} \mathrm{max}$. Input 0 V 06615E02	
Nominal values				
Operating voltage	$U_{N}=-24 \mathrm{~V}$			
End-to-end resistance of the safety barrier$R=358 \Omega$				
Safety values				
Maximum voltage	$\mathrm{U}_{0}=26 \mathrm{~V}$			
Maximum current	$\mathrm{I}_{0}=138 \mathrm{~mA}$			
Maximum permissible external inductance	$\begin{array}{ll} & \text { IIC } \\ \text { Lo } \quad & 0.81 \mathrm{mH} \end{array}$	$\begin{aligned} & \text { IIB } \\ & 5.1 \mathrm{mH} \end{aligned}$		
Maximum permissible external capacitance	$\begin{array}{ll} & \text { IIC } \\ \text { Co } & 0.087 \mu \mathrm{~F} \end{array}$	${ }_{0.67 \mu \mathrm{~F}}^{\mathrm{IIB}}$		
Maximum power	$\mathrm{P}_{\mathrm{o}}=850 \mathrm{~mW}$			
Application note	This barrier is for use with either a Bentley Nevada or Metrix displacement sensor. The potential of the above barrier is negative. If a positive potential is required then it may be possible to use the 9002/11-260-138-001.			
Note	Further technical data see page			

Representante oficial de:

[Argentina - Uruguay - Paraguay - Bolivia - Ecuador.]

